Fourier transform algorithms for pricing and hedging discretely sampled exotic variance products and volatility derivatives under additive processes

نویسندگان

  • Wendong Zheng
  • Yue Kuen Kwok
چکیده

We develop efficient fast Fourier transform algorithms for pricing and hedging discretely sampled variance products and volatility derivatives under additive processes (time-inhomogeneous Lévy processes). Our numerical algorithms are non-trivial versions of the Fourier space time stepping method to nonlinear path dependent payoff structures, like those in variance products and volatility derivatives. The exotic path dependency associated with the discretely sampled realized variance is captured in the numerical procedure by updating two path dependent state variables across monitoring dates. The time stepping procedure between successive monitoring dates can be performed using fast Fourier transform calculations without the usual tedious time stepping calculations in typical finite difference algorithms. We also derive effective numerical procedures that compute the hedge parameters of variance products and volatility derivatives. Numerical tests on pricing various variance products and volatility derivatives were performed that illustrate efficiency, accuracy, reliability and robustness of the proposed Fourier transform algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Form Pricing Formulas for Discretely Sampled Generalized Variance Swaps

Most of the existing pricing models of variance derivative products assume continuous sampling of the realized variance processes, though actual contractual specifications compute the realized variance based on sampling at discrete times. We present a general analytic approach for pricing discretely sampled generalized variance swaps under the stochastic volatility models with simultaneous jump...

متن کامل

Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model

Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability...

متن کامل

Numerical Algorithms for Pricing Discrete Variance and Volatility Derivatives under Time-changed Lévy Processes

We propose robust numerical algorithms for pricing discrete variance options and volatility swaps under general time-changed Lévy processes. Since analytic pricing formulas of these derivatives are not available, some of the earlier pricing methods use the quadratic variation approximation for the discrete realized variance. While this approximation works quite well for long-maturity options on...

متن کامل

Saddlepoint approximation methods for pricing derivatives on discrete realized variance

We consider the saddlepoint approximation methods for pricing derivatives whose payoffs depend on the discrete realized variance of the underlying price process of a risky asset. Most of the earlier pricing models of variance products and volatility derivatives use the quadratic variation approximation as the continuous limit of the discrete realized variance. However, the corresponding discret...

متن کامل

A note on the pricing and hedging of volatility derivatives

We consider the pricing of volatility products and especially volatility and variance swaps. Under risk-neutral valuation we provide closed form formulae for volatility-average and variance swaps. Also we provide a general partial differential equation for derivatives that have an extra dependence on an average of the volatility. We give approximate solutions of this equation for volatility pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012